MULTILAYER CERAMIC CHIP CAPACITORS

SELECTION OF CERAMIC CHIP CAPACITOR

Pro-Cap Multilayer Ceramic Chip Capacitor are RoHS Compliant and offer the most complete range fo characteristics and configuration available in the industry. We suggest your selection of capacitors be based on consideration of the following items:

1. DIELECTRIC TYPE

The choice of dielectric is determined by the required capacitance-temperature stability. We offer COG(1B), X5R, X7R(2R1), X6S, Z5U(2E6) and Y5V(2F4).

2. CAPACITANCE AND TOLERANCE

Capacitance and its tolerance are determined by circuit requirement and cost consideration.

3. RATED VOLTAGE

Rated voltage is determined by circuit requirement.

4. SIZE

Size is determined by the circuit design and cost consideration.

5. PACKAGING

Specify the packaging of Capacitors as BULK or TAPE & REEL.

6. NON-STANDARD REQUIREMENTS

Specify any non-standard requirements which are not stated in the catalogue.

Dielectric	COG(1B)	X5R, X7R(2R1), X6S	Z5U(2E6), Y5V(2F4)
	 Ultra-stable Low dissipation factor Tight tolerance available Good frequency performance No aging of capacitance Class I Dielectric, temperature compensating High stability over time, voltage and temperature changes Nickel barrier termination and excellent mechanical strength 	 Semi-stable High K High volumetric efficiency Highly relieable in high temperature application High insulation resistance Class II Dielectric, temperature stable Excellent frequency characteristics, non-linear capacitance change Higher capacitance then COG Nickel barrier terminations and excellent mechanical strength 	 Highest volumetric efficiency Non-polar construction General purpose, High K dielectric High capacitance density Low ESL, low ESR and excellent frequency response Nickel barrier terminations and excellent mechanical strength
Applications	 LC and RC tuned circuit Filtering Timing 	 Blocking Coupling Timing Bypassing Frequency discriminating Filtering 	BypassingDe-couplingFiltering

PRO-CAP Electronics

MULTILAYER CERAMIC CHIP CAPACITORS

DESCRIPTION: CHIP SERIES (MA TYPE)

Pro-Cap offers RoHS compliant Multilayer Ceramic Chip Capacitors that are ideally suitable for thick-film hybrid circuits and automatic surface mounting on any printed circuit boards. The nickel-barrier terminations consist of a nickel barrier layer over the silver metallization and then finished by electroplated solder layer to ensure the terminations have good solderability. The nickel barrier layer in terminations prevent the dissolution of thermination when extended immersion in molten solder at elevated solder temperature. This product meets the Moisture Sensitivity Level 1 (MSL 1) requirements.

Composition part	Material group	Materials	CAS if applicable
Dielectric body	lectric body Ceramic Barium Titanium Zirconate		
Inner electrode	Ni Paste	Nickel	7440-02-0
		Barium Titanate	12047-27-7
		Ethyl Cellulose	9004-57-3
		n-Paraffin	64771-72-8
		Terpineol	8000-41-7
Terminal electrode	Cu Paste	Copper	7440-50-8
		Glass frit	
		Terpineol	8000-41-7
		Acrylic polymer	
Under plating	Nickel	Ni	7440-02-0
Surface plating	Tin	Sn	7440-31-5

PRO-CAP *Electronics*

MULTILAYER CERAMIC CHIP CAPACITORS

DIELECTRIC CHARACTERISTICS

NPO/COG:

Operating Temparature Range	-55°C to +125°C											
Temperature Coefficient	0 ± 30ppm / °C											
Temperature Voltage Coefficient	0 ± 30pmm / °C	Typi ^{15%}	cal (Capa	acita	nce	Cha	inge	e vs.	Ter	nper	ature
Dissipation Factor	0.1% max, (For "U" material, Quality factor is 2500 min.)	10%		+					+	+		H
Insulation Resistance	>1000 ohms F for 100 G ohms, whichever is less at 25°C, VDCW (The IR at 125°C is 10% of the value at 25°C)	5% 0%						T			Ì	
Ageing	None	-5%										
Withstanding Voltage	>2.5 times VDCW	-15%		25.0	000	25		50%0	75	•	100°C	1250
Test Parameters	1MHz ± 100KHz at 1.0 ± 2Vrms ≤ 1000pF, 25°C 1KHz ± 100Hz at 1.0 ± 2Vrms > 1000pF, 25°C	-55	с	20 0	υC	25	U	50 C	/5	U	100 C	120 C
Capacitance Tolerance	P, A, B, C, D, E, F, G, J, K											

X7R:

Operating Temparature Range	-55°C to +125°C	
Temperature Coefficient	0 ± 15%∆°C	
Temperature Voltage Coefficient	Not applicable	Typical Capacitance Change vs. Temperature
Dissipation Factor	For 50Volts and 100Volts: 2.5% Max.; For 25Volts: 3.0% Max; For 16Volts: 3.5% Max; For 10Volts: 5.0% Max; For 6.3Volts: 10% Max; For values > 10µF and ≤10V, D.F. is 10% Max	15% 10%
Insulation Resistance	>1000 ohms F for 100 G ohms, whichever is less at 25°C, VDCW (The IR at 125°C is 10% of the value at 25°C)	0%
Ageing	2.5% per decade hour, typical	-10%
Withstanding Voltage	>2.5 times VDCW	-15%
Test Parameters	1KHz ± 100Hz at 1.0 ± 2Vrms > 100pF, 25°C	
Capacitance Tolerance	F, G, J, K, M	

X5R:

Operating Temparature Range	-55°C to +85°C	
Temperature Coefficient	0 ± 15%∆°C Max.	
Temperature Voltage Coefficient	Not applicable	Typical Capacitance Change vs. Temperature
Dissipation Factor	For 50Volts and 100Volts: 2.5% Max.; For 25Volts: 3.0% Max; For 16Volts: 3.5% Max; For 10Volts: 5.0% Max; For 6.3Volts: 10% Max; For values > 10µF and ≤10V, D.F. is 10% Max	10% 5%
Insulation Resistance	>1000 ohms F for 100 G ohms, whichever is less at 25°C, VDCW (10,000 ohms at 125°C)	
Ageing	2.5% per decade hour, typical	-10%
Withstanding Voltage	>2.5 times VDCW	-15%C -25°C 0°C 25°C 50°C 75°C 100°C 125°C
Test Parameters	1KHz ± 100Hz at 1.0 ± 2Vrms > 100pF, 25°C	
Capacitance Tolerance	F, G, J, K, M	

PRO-CAP *Electronics*

MULTILAYER CERAMIC CHIP CAPACITORS

DIELECTRIC CHARACTERISTICS

X6S:

Operating Temparature Range	-55°C to +105°C	
Temperature Coefficient	0 ± 22%∆°C	
Temperature Voltage Coefficient	Not applicable	Typical Canacitance Change vs. Temperature
Dissipation Factor	For 50Volts and 100Volts: 2.5% Max.; For 25Volts: 3.0% Max; For 16Volts: 3.5% Max; For 10Volts: 5.0% Max; For 6.3Volts: 10% Max; For values > 10µF and ≤10V, D.F. is 10% Max	
Insulation Resistance	>1000 ohms F for 100 G ohms, whichever is less at 25°C, VDCW (The IR at 125°C is 10% of the value at 25°C)	0%
Ageing	2.5% per decade hour, typical	-10%
Withstanding Voltage	>2.5 times VDCW	-15%
Test Parameters	1KHz ± 100Hz at 1.0 ± 2Vrms > 100pF, 25°C	
Capacitance Tolerance	К, М	

Z5U:

Operating Temparature Range	-10°C to +85°C	Typical Capacitance Change vs. Temperature
Temperature Coefficient	+22% -56%∆°C Max	
Dissipation Factor	4.0% Max	-20%
Insulation Resistance	>100 ohms F for 10 G ohms, whichever is less at 25°C, VDCW	-40%
Ageing	5.0% per decade hour, typical	-60%
Withstanding Voltage	>2.5 times VDCW	-80%
Test Parameters	1KHz ± 100Hz at 0.5 ± 1Vrms, 25°C	-100%
Capacitance Tolerance	K, M, Z	

Y5V:

Operating Temparature Range	-30°C to +85°C	
		Typical Capacitance Change vs. Temperature
Temperature Coefficient	+22% -82%∆°C Max	40%
Dissipation Factor	For 25Volts and 50Volts: 5% Max; For 16Volts: 7.0% Max; For 10Volts: 9.0% Max; For 6.3Volts: 11% Max; For higher Cap values > 10µF and ≤10V, D.F. is 10% Max	20%
Insulation Resistance	>100 ohms F for 10 G ohms, whichever is less at 25°C, VDCW	
Ageing	7.0% per decade hour, typical	-60%
Withstanding Voltage	>2.5 times VDCW	-80% -55°C -25°C 0°C 25°C 50°C 75°C 100°C 125°C
Test Parameters	1KHz ± 100Hz at 1.0 ± 2Vrms, 25°C	
Capacitance Tolerance	K, M, Z]

CAPACITANCE CHANGE VS DC VOLTAGE

